Mathematics

Extension 1

General Instructions

O 0 0o o

Reading time — 5 minutes.
Working Time — 2 hours.

Write using a blue or black pen.
Board approved calculators may
be used.

A table of standard integrals is
provided at the back of this paper.
Show all necessary working in
Questions 11 — 14,

Begin each question on a new
page.

Write your name and your
teachers name on the booklet and

your muitiple choice answer sheet.
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Total marks (70)
Section |
10 marks

Attempt questions 1 —10.
Answer on the multiple choice
answer sheet provided.

o Allow about 15 minutes for this
section.

Section |l
60 marks

Attempt questions 11 - 14
Answer in the booklet provided
and show all necessary working,

o Start a new page for each question
and clearly label it.

o Allow about 1 hour 45 minutes for
this section.

o Marks are shown beside each
question



Section 1 Total marks - 10
. The smallest positive value of x for which tan (2x) = 1is
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. The inverse of the function f(x) = e 2**3 s

L fi(x) = em2x-3
TN x) = ez
@) = log.(Va) -3

FI) = —log, (22— 3)



For the graph y = f (x) shown above, f'(x) is negative when

A =3 < x <3
B. —3 <x <3
C. x <—3o0rx >3

D. x £ —=3o0orx =3

4. The solutions to the equation e** - 5¢2% 4+ 4 = ( are

A. land 4
B. —dand—1
C. —log,2,0,log,2

D. 0,log, 2



5. The graph of a function f is shown below
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The graph of a primitive function off could be
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6. The derivative of log, ( 2f (x) ) with respect to X is

F(x)
f(x)

A.

o M%)

> fx)

fr(x)
27 (x)

D. loge (2f'(x))

3
7. The normal to the curve with equation Yy = X2 + X at the point (4,12) is paraliel to

the straight line with equation

A dx =y
B. 4y +x =7
C.y= £+ 1
D. x~4y=-5
8. The function with rule f (x) = —3sin (ESJE) has period
A 3
B. 5
C. 10
:-r
D. —
5



9. Asection of the graph of [ is shown below:

]

The equation of f could be

A. f(x) =tanx
B. f(x) = tan (x — ?—;)
C. f{x)=tan [2(x — E)]

D. f(x) =tan[2(x — 575 ]

10. The equation of the chord of contact of the tangents to the parahola xt = 8y
from the point (3,-2) is;

A 3x—4y+8=0
B. 3x—8y+16=0
C. 3x-8y—8=0

D. 3x—4y+16 =0



Answer all questions starting each question on a new side of paper with your name and

Section 2 Total marks - 60

question number at the top of the page

Question 11 (15 marks)

A.

Find the coordinates of the point P which divides the interval from
A(-3,6) to B(12, -4) in the ratio of -2:3

Find the value cos105° in simplest exact form with a rational denominator.

. . 1 . .
Solve the inequality 2xx_+1 = 3 and graph your sclution on a number line
[im sinex
Fing "t 20
x—-=0 7x

Use the substitution u =t + 1 or otherwise to evaluate folvatTi—dt

{Leave your answer in exact form)

Find the acute angle, to the nearest degree, between the lines
y=3x+1land y=—x+6



Question 12 (15 marks) (Start a new page)

A. (i) Show that the equation of the tangent at T (—2t, t2)
on the parabola y = ﬁxz is given by v+ tx + t% = 0

(ii) The point M (x,y) is the midpoint of the interval TA where
Ais the x intercept of the equation of the tangent at T.
Find the equation of the locus of M as T moves on the parabola.

d
B. Find [ ——

C. Given f (x) = sin™1 2x
(i) Write down the domain and range of f(x)
(it} Sketch the curve

D. A spherical balloon is expanding so that its volume VV mm?3
increases at a constant rate of 72mm?/second. What is the

rate of increase of its surface area 4 mm? when the radius is 12mm.

E. Use mathematical induction to prove that
n® + (m+ 1%+ (n+ 2)3 is divisible by 9 for all positive integers n



Question 13 (15 marks) (Start a new page)

A. A particle moves in a straight line and at time t seconds, its distance xcm
from a fixed pointis given by x = 1+ = cos 2t

(i) Show that the motion of the particle is simple harmonic by
expressing ¥ = —n? (x — 4)

{ii} State the period of its motion

(iii} Find the displacement of the particle from the origin when it is at
rest, and determine its amplitude.

ABC s a triangle inscribed in a circle. MAN is a tangent to the circle
at A. BD is a chord of the circle such that BD|IMN. Let ZMAB=x
Copy diagram onto your answer sheet.

Show that CA bisects £BCD.



C. Newton’s law of cooling states that the rate of change of the
temperature T of a body at any time t is proportional to the
difference in temperature T of the body and the temperature
m of the surrounding medium ie: %% = k(T —m) where k

is a constant.

(i) Show that T = m + Ae* where A is a constant, satisfies

this equation

(it} If the temperature of the surrounding air is 40°C and
the temperature of the body drops from 170°C to 105°C in
45 minutes, find the temperature of the body in another
90 minutes {nearest whole degree)

[Find k correct to 3 decimal places]

(i) Find the time taken for the temperature of the body to
drop to 80°C (to the nearest minute)

D. Find [ cos? 2x dx



Question 14 (15 marks) (Start a new page)

. d%x . d 1 2 .
A. (i) Prove o T GV ) where v denotes velocity 2

(i) The acceleration of a particle moving in a straight line is given
by ¥ = —2e™ where x is the displacement from the origin.
Initially the particle is at the origin with velocity 2m/s.

a.Provethat v¢ = 4e~% 2

B. Describe the subsequent motion of the particle with reference 2
to its speed and direction

B. P{x}is a monic polynomial of degree 3. P(x} has a quadratic factor 2
of x2 — 1 and when P(x) is divided by x — 2, the remainderis -9.
Form an equation for P(x) and hence solve P(x) =0

C. Anparticle is projected from a point P on horizontal ground, with initial
Speed V m/s at an angle of elevation & to the horizontal. Its equations of motion
areX = 0 and ¥ = —g. The horizontal and vertical components of velocity and
displacement of the particle at any time ¢ are given by

x _y i Py ¢
57 =Vcosa and ——=Vsina—g

x=Vtcosaand y= Vtsina — § gt? (do not prove these)




(i) Show that the time of the flight of the of the particle is given
by t = 2Vsina

(i) The particle reaches a point (), as shown, where the direction

of the flight makes an angle 8 with the horizontal. Show that

Vsina — gt
tanff = ——
g Veosa
(iii) Hence show that the time taken to travel from P to Q is

Vsin{a—f)
geos fs

seconds

(iv) Consider the case where § = g . If the time taken to travel

from P to @ is one third of the total time of the flight, find the value of &.
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