

SYDNEY TECHNICAL HIGH SCHOOL

2013

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics

Extension 1

General Instructions

- o Reading time 5 minutes.
- Working Time 2 hours.
- Write using a blue or black pen.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11 – 14.
- Begin each question on a new page.
- Write your name and your teachers name on the booklet and your multiple choice answer sheet.

Total marks (70)

Section I

10 marks

- Attempt questions 1 10.
- Answer on the multiple choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II

60 marks

- Attempt questions 11 14
- Answer in the booklet provided and show all necessary working.
- Start a new page for each question and clearly label it.
- Allow about 1 hour 45 minutes for this section.
- Marks are shown beside each question

- 1. The smallest positive value of x for which $\tan (2x) = 1$ is
- A. 0
- B. $\frac{\pi}{8}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{2}$
- 2. The inverse of the function $f(x) = e^{2x+3}$ is
- A. $f^{-1}(x) = e^{-2x-3}$
- B. $f^{-1}(x) = e^{\frac{x-3}{2}}$
- C. $f^{-1}(x) = log_e(\sqrt{x}) \frac{3}{2}$
- D. $f^{-1}(x) = -\log_e(2x 3)$

3.

For the graph y = f(x) shown above, f'(x) is negative when

A.
$$-3 < x < 3$$

B.
$$-3 \le x \le 3$$

c.
$$x < -3 \text{ or } x > 3$$

D.
$$x \le -3$$
 or $x \ge 3$

4. The solutions to the equation e^{4x} - $5e^{2x}$ + 4 = 0 are

B.
$$-4$$
 and -1

C.
$$-\log_e 2$$
, 0, $\log_e 2$

D.
$$0, log_e 2$$

5. The graph of a function f is shown below

The graph of a primitive function of \boldsymbol{f} could be

A.

B.

C.

D.

- 6. The derivative of log_e (2f(x)) with respect to x is
 - A. $\frac{f'(x)}{f(x)}$
 - B. $2 \frac{f'(x)}{f(x)}$
 - C. $\frac{f'(x)}{2f(x)}$
 - D. log_e (2f'(x))
- 7. The normal to the curve with equation $y = x^{\frac{3}{2}} + x$ at the point (4,12) is parallel to the straight line with equation
 - A. 4x = y
 - B. 4y + x = 7
 - c. $y = \frac{x}{4} + 1$
 - D. x 4y = -5
- 8. The function with rule $f(x) = -3 \sin(\frac{\pi x}{5})$ has period
 - A. 3
 - в. 5
 - c. 10
 - D. $\frac{\pi}{5}$

9. A section of the graph of f is shown below:

The equation of f could be

A.
$$f(x) = \tan x$$

$$B. f(x) = \tan(x - \frac{\pi}{4})$$

c.
$$f(x) = \tan \left[2\left(x - \frac{\pi}{4}\right)\right]$$

D.
$$f(x) = \tan[2(x - \frac{\pi}{2})]$$

10. The equation of the chord of contact of the tangents to the parabola $x^2 = 8y$ from the point (3,-2) is;

A.
$$3x - 4y + 8 = 0$$

B.
$$3x - 8y + 16 = 0$$

c.
$$3x - 8y - 8 = 0$$

D.
$$3x - 4y + 16 = 0$$

Section 2

Total marks - 60

Answer all questions starting each question on a new side of paper with your name and question number at the top of the page

Question 11 (15 marks)

- A. Find the coordinates of the point P which divides the interval from A(-3,6) to B(12, -4) in the ratio of -2:3
- B. Find the value $cos105^\circ$ in simplest exact form with a rational denominator.
- C. Solve the inequality $\frac{2x+1}{x-1} \ge 3$ and graph your solution on a number line
- D. Find $\lim_{x \to 0} \frac{\sin 6x}{7x}$
- E. Use the substitution u = t + 1 or otherwise to evaluate $\int_0^1 \frac{t}{\sqrt{t+1}} dt$ (Leave your answer in exact form)
- F. Find the acute angle, to the nearest degree, between the lines y = 3x + 1 and y = -x + 6

Question 12 (15 marks) (Start a new page)

A. (i) Show that the equation of the tangent at $T(-2t, t^2)$ on the parabola $y = \frac{1}{4}x^2$ is given by $y + tx + t^2 = 0$

2

(ii) The point M(x,y) is the midpoint of the interval TA where A is the x intercept of the equation of the tangent at T. Find the equation of the locus of M as T moves on the parabola.

3

B. Find $\int \frac{dx}{4+x^2}$

1

- C. Given $f(x) = \sin^{-1} 2x$
 - (i) Write down the domain and range of f(x)

2

(ii) Sketch the curve

1

D. A spherical balloon is expanding so that its volume $V\ mm^3$ increases at a constant rate of $72mm^3$ /second. What is the rate of increase of its surface area $A\ mm^2$ when the radius is 12mm.

3

E. Use mathematical induction to prove that $n^3 + (n+1)^3 + (n+2)^3 \text{ is divisible by 9 for all positive integers } n$

3

Question 13 (15 marks) (Start a new page)

- A. A particle moves in a straight line and at time t seconds, its distance xcm from a fixed point is given by $x = 1 + \frac{1}{2} \cos 2t$
 - (i) Show that the motion of the particle is simple harmonic by expressing $\ddot{x}=-n^2\,(x-A)$
 - (ii) State the period of its motion
 - (iii) Find the displacement of the particle from the origin when it is at 2 rest, and determine its amplitude.

В.

ABC is a triangle inscribed in a circle. MAN is a tangent to the circle at A. BD is a chord of the circle such that BD||MN. Let \angle MAB= x Copy diagram onto your answer sheet. Show that CA bisects \angle BCD.

- C. Newton's law of cooling states that the rate of change of the temperature T of a body at any time t is proportional to the difference in temperature T of the body and the temperature m of the surrounding medium ie: $\frac{dT}{dt} = k(T-m)$ where k is a constant.
 - (i) Show that T = m + Ae^{kt} where A is a constant, satisfies this equation

1

(ii) If the temperature of the surrounding air is 40° C and the temperature of the body drops from 170° C to 105° C in 45 minutes, find the temperature of the body in another 90 minutes (nearest whole degree) [Find k correct to 3 decimal places]

3

(iii) Find the time taken for the temperature of the body to drop to 80°C (to the nearest minute)

2

D. Find $\int \cos^2 2x \ dx$

2

Question 14 (15 marks) (Start a new page)

A. (i) Prove
$$\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2} v^2\right)$$
 where v denotes velocity

(ii) The acceleration of a particle moving in a straight line is given by $\ddot{x} = -2e^{-x}$ where x is the displacement from the origin. Initially the particle is at the origin with velocity 2m/s.

$$lpha$$
. Prove that $v^2 = 4e^{-x}$

- β . Describe the subsequent motion of the particle with reference 2 to its speed and direction
- B. P(x) is a monic polynomial of degree 3. P(x) has a quadratic factor of $x^2 1$ and when P(x) is divided by x 2, the remainder is -9. Form an equation for P(x) and hence solve P(x) = 0
- C. A particle is projected from a point P on horizontal ground, with initial Speed V m/s at an angle of elevation α to the horizontal. Its equations of motion are $\ddot{x}=0$ and $\ddot{y}=-g$. The horizontal and vertical components of velocity and displacement of the particle at any time t are given by

$$\frac{dx}{dt} = V \cos \alpha \ and \ \frac{dy}{dt} = V \sin \alpha - gt$$

$$x = Vt \cos \alpha$$
 and $y = Vt \sin \alpha - \frac{1}{2} gt^2$ (do not prove these)

- (i) Show that the time of the flight of the of the particle is given by $t=\frac{2Vsin\alpha}{g}$
- 1

2

- (ii) The particle reaches a point Q, as shown, where the direction of the flight makes an angle eta with the horizontal. Show that
 - $tan\beta = \frac{Vsin\alpha gt}{Vcos\alpha}$
- (iii) Hence show that the time taken to travel from P to Q is

2

$$\frac{Vsin(\alpha-\beta)}{gcos \beta}$$
 seconds

- (iv) Consider the case where $eta=rac{lpha}{2}$. If the time taken to travel
- 2
- from P to Q is one third of the total time of the flight, find the value of lpha.

Student Name:	Teacher Name:
f) $y=3x+1$ $y=-x+6$ $m=-1$	$\frac{1}{2} \cdot y = \frac{1}{4} x^2$
$m_1 = 3$ $m_2 = -1$	12. y = 4 x 4+ = 1 doc = 2 x
/	when x=-2+ #= m=-+
tan 0 = m, -m2	y - +2 = -+(x - 2+)
1+ M, M2	$y-t^2 = -tx - 2t^2$
$-\frac{3-1}{1+-3}$	$y + +x + +^2 = 0$
$= \frac{4}{2} = 2$ $\therefore \theta = 63^{\circ} \theta$	
0 = 63° 0	
V	
ai) A is When y=0	b) \(\int \frac{dx}{4+x^2} \)
tx++2=0/	
x = -+	$=\frac{1}{2}+an^{-1}(\frac{2}{2})+c$
A(-+,0) Now M 0	000
is midpoint of A(-+,0)	o) (1) + (1) = sin-12)c
and $T(-2++2)$	Donain: $-1 \le 2x \le 1$
- 1	-1 < x < 1 0 Range: - 5 < y < 5 0
$\Rightarrow M \left(\begin{array}{c} -3t \\ -3t \\ \end{array} \right) \left(\begin{array}{c} -3t \\ 2 \end{array} \right) \left(\begin{array}{c} -3t \\ 2 \end{array} \right)$ $x = \begin{array}{c} -3t \\ 2 \end{array} \right) \left(\begin{array}{c} -3t \\ 2 \end{array} \right) \left(\begin{array}{c} -3t \\ 2 \end{array} \right)$	Kange: = = = = 0
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	y 1
$2x^2 = 7y $	(ii) ± 12,1 (ii)
	-1 0 1 2 JC
	/ - <u>T</u>
	2

Student Name: Teacher Name: = 12 mm2/ sec is true for n= result $n^3 + (n+1)^2 + (n+2)$ be comes divides by Step Assume result is true for n=K Step 3 Show result is true for n=k+1 $(k+1)^3+(k+2)^3+(k+3)^3$ from step is integral since

Student Name:	Teacher Name:
M and K	are integral Offer correct
<u> </u>	
Since resul-	t is true for n=1 it
must also b	e true for n=1+1=2
n=2+ =3.	and hence for all positive
integral value	s of n.
$13.a) x = 1 + \frac{1}{2}$	$\frac{\cos 2t}{\cos 2x} \qquad \text{(ii) Period is } \frac{2\pi}{n}$ $\frac{\cos 2x}{\cos 2x} = -n^2(2x - A) \qquad n = 2 \qquad 0$
SAM if x	$s = -n^2(gc - A)$ $n = 2$
$\mathfrak{A} = -\sin 2t$	- Desid = IT second
$2C = -2\cos 2T$	DUT trom oc
$\frac{\cos 2t = 20x}{\cos^2 x}$	<u>1)</u>
$\frac{1}{x} = -4(x - \frac{1}{x})$ required for	1) 13 0+
reguled for	· M
citi) At Cest	when b) Join CD
jc. = 0	$\angle MAB = \angle ABD = x$
ic -sin2+=0	
2+=0, T, 2T,	(1) (1) (1)
十=0 玉	CAngles in same segmen
sub. any into	x $\angle MAB = \angle ACB = x$
3C=1+= cos 0 =	1/2 at rest () (Alternate Segment Theore
Amplitude = 2	O CA bisects LBCD
	$as \angle ACB = \angle ACD = x$

Student Name: Teacher Name: cii) m = 40 +=45 T=105 A=130 so 0 = 40 + 130e kt 105 = 40 + 130 e k + 45 65 = 130 e 45k = e 45k = 40+130e-0.015x135 aii) T = 40 + 130 e -0.015+ + When T=80 80 = 40 + 130 e -0.015+ = 130 e-0.015+ = -0.015+ = 79 minutes () since V = dx

Student Name: T	eacher Name:
(ii) d) From (i) sub	B) As & increases
tx(2V2) for x	from 0 it
$dx\left(\frac{1}{2}\sqrt{2}\right) = -2e^{-x}$	moves to the
$\int dx \int dx$	right or in a
$\frac{1}{2}\sqrt{2} = 2e^{-x} + c0$	positive direction.
when $sc=0$, $v=2$	As $x \to a$, $y \to 0$
$-\frac{1}{2}x^2 = 2e^0 + c$	so it is slowing
2 = 2 + c	down but nover
- $ C = 0$	reaches 0. 0
$\frac{1}{12} = 4e^{-x}$	
b) Liet P(x)=(x2-1)(x-2)	o) ci) Solve y=0
$\Rightarrow P(2) = (4-1)(2-d) = -90$	Vtsind - 2 q+2 = 0
6-34 =-9	+(Vsind - = 94) = 00
-34 = -15	Vsind = 2 gt
- d = 5	2 Vsind or 0 = +
P(x) = (x-1)(x+1)(x-5)	3
oc = 1, -1, 5 0	⇒Time of flight is
	2 Vsind 0
4	dy
$ \alpha $ $ \beta $	at 1
The state of the s	at .
B	Vsind-gt
oft.	V COSA

Student Name: Teacher Name: $\beta = \frac{Vsind-g+}{V\cos d}$ V cos d solve for + VsinBosd = Vsind cosB - cosBgt = V(sind cos B-sin B cos +) = Vsin (2-B) Vsin(a-B) then time from P to Q is and this is 3 results) = 4 3 tan = = is acute